Logo

Your AI-Powered Personal Tutor

Q)

Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be such that $g(f(x))=x$ for all $x \in \mathbf{R}$. If $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$ is equal to :

0
3
9
27

Solution

Please Login to view solution steps....

View Solution